COMBINATORICA Akadémiai Kiadó – Springer-Verlag

ON THE NUMBER OF LINES IN PLANAR SPACES

KLAUS METSCH

Received June 5, 1992 Revised December 2, 1992

Suppose S is a planar space with v > 4 points and let q be the positive real number such that $v = q^3 + q^2 + q + 1$. Assuming a weak non-degeneracy condition, we shall show that S has at least $(q^2 + 1)(q^2 + q + 1)$ lines with equality iff q is a prime power and S = PG(3, q).

1. Introduction

A linear space is a pair $S = (\mathcal{P}, \mathcal{L})$ consisting of a set \mathcal{P} of points and a set \mathcal{L} of subsets of \mathcal{P} , called lines, such that any two distinct points occur in a unique line, every line has at least two points, and there are at least two lines. A subspace of S is a set S of points such that every line that has two points in S is contained in S. A planar space is a linear space together with a set \mathcal{E} of subspaces, called planes, such that any three non-collinear points occur in a unique plane, every plane has three non-collinear points, and there are at least two planes.

The famous de Bruijn–Erdős–Hanani Theorem ([1,4]) says that every linear space has at least as many lines as points with equality iff it is a (possibly degenerate) projective plane. In this paper we prove an analogous result for planar spaces.

Let **S** be a planar space, v the number of its points and b the number of its lines. Dowling and Wilson ([2]) showed that $b \ge 2(v-1)$ with equality iff **S** is the direct product of a (possibly degenerate) projective plane and a point, which means that **S** has a plane with v-1 points that is a projective plane. A planar space with a plane E containing "almost" all points is degenerate in the sense that its structure is dominated by the structure of E. Assuming a weak non-degeneracy condition, one can improve the bound for the number of lines substantially.

Theorem 1.1. Let S be a finite planar space with v > 4 points and b lines, and let q be the unique positive real number satisfying $v = q^3 + q^2 + q + 1$. If every plane has

at most q^3+q^2+1 points, then $b \ge (q^2+1)(q^2+q+1)$ with equality iff q is a prime power and S is the 3-dimensional projective space PG(3,q) of order q.

Remark. If some plane E has v-c points, $v=q^3+q^2+q+1$, c< q, then S has at least $(c+1)(v-c)-\binom{c}{2}$ lines (at least |E|=v-c lines in E and at least $c(v-c)-\binom{c}{2}$ lines joining the c points not on E to the points on E). Planar spaces with $b=(c+1)(v-c)-\binom{c}{2}$ can be constructed as follows.

Consider a partition M_1, \ldots, M_s of the set M of unordered pairs $\{i, j\}$, $i, j = 1, \ldots, c$ and $i \neq j$, with the property that all pairs contained in the same set M_k are disjoint. Choose a projective plane with v-c points which has a line l with at least s points and choose points Q_1, \ldots, Q_s on l. For example, E can be a degenerate projective plane, which has a line l of size $v-c-1 \geq {c \choose 2}$, $s={c \choose 2}$, and M_1, \ldots, M_s is the trivial partition of M. The planar space consists of the plane E and C points P_1, \ldots, P_c not on E and such that the line joining P_i and P_j contains the point Q_k where $\{i,j\}$ is in M_k .

One might also start with a 3-dimensional projective space \mathbf{P} , a plane E of \mathbf{P} and c points P_1, \ldots, P_c not on E no three of which are collinear. Then let \mathbf{S} be the planar space induced by \mathbf{P} on $E \cup \{P_1, \ldots, P_c\}$.

2. Proof of the theorem

In this section, **S** denotes a planar space with v > 4 points and b lines. The number of lines on a point P is denoted by r_P and is called the *degree* of P. The number of points on a line l is denoted by k_l and is called the *degree* of l.

We define a function f by $f(s,v) = s^2(v-s)/(v-1)$ for $2 \le s \le v-1$. The following lemma is a variant of a result of Stanton and Kalbfleisch [5].

Lemma 2.1. Suppose that S is a subspace of S with s points. Then there are at least f(s,v) lines which intersect S in precisely one point.

Proof. Denote by \mathcal{M} the set of lines that meet S in precisely one point. Since every point of S is joined to every point outside of S by a line of \mathcal{M} , we have $\sum_{l\in\mathcal{M}}(k_l-1)=s(v-s)$. Since the lines of \mathcal{M} cover every pair of points outside of S at most once, we have $\sum_{l\in\mathcal{M}}(k_l-1)(k_l-2)\leq (v-s)(v-s-1)$. It follows that $\sum_{l\in\mathcal{M}}(k_l-1)^2\leq (v-s)(v-1)$. Using the inequality of Cauchy and Schwarz, we conclude that

$$s^{2}(v-s)^{2} = \left(\sum_{l \in \mathcal{M}} (k_{l}-1)\right)^{2} \leq |\mathcal{M}| \sum_{l \in \mathcal{M}} (k_{l}-1)^{2} \leq |\mathcal{M}|(v-s)(v-1).$$

Consequently $|\mathcal{M}| \geq f(s, v)$.

Let q be the unique positive real number such that the number of points is $v = q^3 + q^2 + q + 1$. We suppose that every plane has at most $q^3 + q^2 + 1$ points and that the number of lines is at most $(q^2 + 1)(q^2 + q + 1)$. We shall show that q is a prime power and $\mathbf{S} = PG(3, q)$.

Lemma 2.2. Every plane has at most q^2+q+1 points.

Proof. Let E be a plane and set e = |E|. Since E contains at least e lines (by the de Bruijn-Erdős-Hanani Theorem mentioned in the introduction), Lemma 2.1 shows that $b \ge e + f(e, v) =: g(e, v)$.

Assume that $q^2 + q + 1 < e \le q^3 + q^2 + 1$. Since the function $x \to g(x, v)$ has two extrema, a minimum for a negative value of x and a maximum for a positive value of x, it follows that $b > g(q^2 + q + 1, v)$ or $b \ge g(q^3 + q^2 + 1, v)$. Since $b \le (q^2 + 1)(q^2 + q + 1)$, both cases lead to a contradiction.

Lemma 2.3. If the average point degree is at least q^2+q+1 , then S=PG(3,q).

Proof. Denote the average point degree by r and suppose that $r \geq q^2 + q + 1$. We have $\sum_{l \in \mathcal{L}} k_l (k_l - 1) = v(v - 1)$ and $\sum_{l \in \mathcal{L}} k_l = \sum_{P \in \mathcal{P}} r_P = v \cdot r$. Hence $\sum_{l \in \mathcal{L}} k_l^2 = v(v - 1 + r) = v(q^3 + q^2 + q + r) \leq v(q \cdot r + r) = v(q + 1)r$. Denote by b the number of lines. Then, using the inequality of Cauchy and Schwarz, we obtain

$$(1) \qquad bv(q+1)r \geq b\sum_{l\in\mathscr{L}}k_l^2 \geq \left(\sum_{l\in\mathscr{L}}k_l\right)^2 = v^2r^2.$$

Consequently $b \ge \frac{vr}{q+1} = (q^2+1)r \ge (q^2+1)(q^2+q+1)$. Hence, $b = (q^2+1)(q^2+q+1)$ and equality holds in (1), which implies that every line has the same degree k. It is given by bk(k-1) = v(v-1), so k=q+1 and every plane is a 2-design with line degree q+1. Since planes have at most q^2+q+1 points, it follows that every plane is a projective plane of order q. The points are on $\frac{v-1}{k-1} = q^2 + q + 1$ lines and each line lies in $\frac{v-k}{q^2} = q+1$ planes. Hence, q must be a prime power and $\mathbf{S} = PG(3,q)$.

Lemma 2.4. A line of degree k meets at least $\frac{k^2(v-k)}{g^2+g}$ other lines.

Proof. Suppose that a E is a plane that contains the line l of degree k. Then, by Lemma 2.1, l meets at least $\frac{k^2(|E|-k)}{|E|-1} \ge \frac{k^2(|E|-k)}{q^2+q}$ lines of E. Taking the sum over the planes containing l, we see that l meets at least $\frac{k^2(v-k)}{q^2+q}$ lines.

Lemma 2.5. Suppose that $k_1, \ldots, k_r, r \ge 1$, are positive integers satisfying $3(k_i+k_j) \le 2v$ for different indices $i, j \in \{1, \ldots, r\}$. Set $k := \frac{1}{r} \sum_{i=1}^r k_i$ and define $f(x) := x^2(v-x)$. Then $\sum_{i=1}^r f(k_i) \ge rf(k)$.

Proof. We proceed by induction on the number n of indices i satisfying $k_i \neq k$. If n = 0, then the statement is trivial. Suppose that n > 0. Then there are indices i and j with $k_i < k < k_j$. We may assume that $k_1 < k < k_2$. Put $d := k_2 - k$. Then

$$f(k_1) + f(k_2) - f(k_1 + d) - f(k_2 - d) = d(2v - 3k_1 - 3k_2)(k_2 - k_1 - d) \ge 0,$$

since $k_2 - k_1 - d = k - k_1 > 0$. It suffices therefore to verify the statement, if we replace k_1 by $k_1 + d$ and k_2 by $k_2 - d = k$. But this follows from the induction hypothesis, since still $k = \frac{1}{r} \sum_{i=1}^{r} k_i$ and $3(k_i + k_j) \leq 2v$ for different indices i and j

(this is trivial, if $i, j \neq 1$ or $\{i, j\} = \{1, 2\}$; also $3(k_1 + k_i) \leq 2v$ for $i \geq 3$, since the new value of k_1 is still less then the old value of k_2).

Lemma 2.6. If \mathcal{M} is the set of lines passing through a point P, then $\sum_{l \in \mathcal{M}} k_l^2(v-k_l) \ge r_P k^2(v-k)$ where k is the average degree of the lines in \mathcal{M} .

Proof. This will follow from the preceding lemma, if we can show that $3(k_l+k_h) \le 2v$ for any distinct lines $l,h \in \mathcal{M}$. Consider lines $l,h \in \mathcal{M}$. The sum of their degrees is at most one more than the number of points in the plane they span, so $k_h+k_l \le q^2+q+2$ and hence $k_h+k_l \le \lfloor q^2+q+2 \rfloor$.

Assume that $2v \le 3(k_l+k_h)$. Then $2(q^3+q^2+q+1) \le 3(q^2+q+2)$, which implies that q < 2. Hence $2v \le 3(k_l+k_h) \le 3 \cdot |q^2+q+2| \le 3 \cdot 7 = 21$, and thus $v \le 10$.

If $v=q^3+q^2+q+1=10$ then q<1.7; therefore $q^2+q+2<7$ and hence $2v>3\cdot \lfloor q^2+q+2\rfloor$, a contradiction.

Next consider the case in which v=9. Then q<1.6, so $q^2+q+1<6$ and the number of lines is $b \le (q^2+1)(q^2+q+1)<19$. By Lemma 2.2, every plane has at most 5 points. On the other hand, $18=2v \le 3(k_l+k_h)$, so $k_l+k_h \ge 6$. Hence $k_l+k_h=6$ and the plane E spanned by h and l has 5 points. If l has 4 points, then every other line meeting l has 2 points and there must be 4(v-4)=20 of them. But b<19, so l and l have degree 3 and l has 6 lines. Lemma 2.1 implies that there are at least $5^2(v-5)/(v-1)>12$ lines that meet l in one point. Hence l>6+12=18, a contradiction.

If v=8 then q<1.5 and $q^2+q+2<6$. But $2v\leq 3\cdot \lfloor q^2+q+2\rfloor$, so v=8 is not possible.

Assume that v=7. Then q<1.4, $q^2+q+1<5$ and $b\leq (q^2+1)(q^2+q+1)<13$. Hence every plane has at most 4 points, which implies that the lines have size 2 or 3 and distinct lines of size 3 are disjoint. Thus there are at most two 3-lines. It follows that the number of 2-lines is at least $\frac{1}{2}[v(v-1)-2\cdot3\cdot2]=15$, a contradiction.

If $v \in \{5,6\}$, then q < 1.3, so planes have at most $q^2 + q + 1 < 4$ points, which implies that every line has degree 2; therefore $b = \frac{1}{2}v(v-1)$, a contradiction, since $b \le (q^2+1)(q^2+q+1)$.

Lemma 2.7. The number q is a prime power and S = PG(3,q).

Proof. In view of Lemma 2.3, we may assume that the average point degree is at most q^2+q+1 . We shall show that in this case every point has degree q^2+q+1 . Let P_0 be a point and denote by r its degree and by \mathcal{M} the set of lines on P_0 . If $l \in \mathcal{M}$, then Lemma 2.4 shows

$$\sum_{P \in l \setminus \{P_0\}} (r_P - 1) \ge \frac{k_l^2 (v - k_l)}{q^2 + q} - (r - 1).$$

Consequently

$$\sum_{P\in\mathcal{P}} (r_P-1) \ge (r-1) + \sum_{l\in\mathcal{M}} \left(\frac{k_l^2(v-k_l)}{q^2+q} - (r-1) \right).$$

Since the average point degree is at most q^2+q+1 , it follows that

(2)
$$(r-1)^2 + v(q^2 + q) \ge \sum_{l \in \mathcal{M}} \frac{k_l^2(v - k_l)}{q^2 + q}.$$

The average degree k of the lines of \mathcal{M} is given by v-1=r(k-1). Therefore (2) and the preceding lemma imply that

$$(r-1)^2 + v(q^2 + q) \ge r \frac{k^2(v-k)}{q^2 + q}$$

Assume that $r \leq q^2 + q + 1$. Then $k \geq q + 1$, since v - 1 = r(k - 1). Also $k \leq q^2 + q \leq v - q - 1$, since every plane has at most $q^2 + q + 1$ points. Since the polynomial f defined by f(x) := x(v - x) has degree 2 and negative leading coefficient, and in view of f(q+1) = f(v-q-1), it follows that $k(v-k) = f(k) \geq f(q+1) = (q+1)(v-q-1) = q^2(q+1)^2$. Hence

$$(r-1)^2 + v(q^2 + q) \ge rkq(q+1) = (v-1+r)q(q+1).$$

Consequently $(r-1)^2 \ge (r-1)q(q+1)$, so $r \ge q^2 + q + 1$. Since P_0 was any point, it follows that the average point degree is at least $q^2 + q + 1$. Lemma 2.3 completes the proof of the lemma.

A problem

Can a theorem similar to Theorem 1.1 be proved for the number of lines in a geometric lattice of any dimension? More generally, for q>1 and $d\geq 2$, define

$$\Theta_d := \frac{q^{d+1}-1}{q-1} = q^d + \ldots + q+1 \quad \text{and} \qquad \Psi^{d+1}_{s+1} := \prod_{i=0}^s \frac{\Theta_{d-i}}{\Theta_i}.$$

Assuming some non-degeneracy condition, is it possible to prove that a geometric lattice of rank d+1 (hence dimension d) with Θ_d points has at least Ψ^{d+1}_{s+1} subspaces of rank s+1 (dimension s), $1 \le s \le d-1$, with equality iff it is PG(d,q)? This is known to be true only if s=d-1 (see [3]) or d=3 and s=1 (Theorem 1.1).

References

- [1] N. G. DE BRUIJN, and P. ERDŐS: On a combinatorial problem, *Indag. Math.* 10 (1948), 421–423.
- [2] T. A. DOWLING, and M. WILSON: The slimmest geometric lattices, Trans. Am. Math. Soc. 196 (1974), 203-215.
- [3] C. Greene: A rank inequality for finite geometric lattices, J. Comb. Th. 9 (1970), 357-364.

- [4] H. HANANI: On the number of straight lines determined by n points, Riveon Lematematika 5 (1951), 10–11. [5] R. G. STANTON, and J. G. KALBFLEISCH: The $\lambda-\mu$ problem: $\lambda=1$ and $\mu=3$, in:
- Proc. Second Chapel Hill Conf. on Combinatorics, Chapel Hill, 451-462, 1972.

Klaus Metsch

Mathematisches Institut Arndtstrasse 2 D-35392 Giessen GermanyKLAUS.METSCH@MATH.UNI-GIESSEN.DE